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Motivation

 Last lecture, we learned about Pass Transistor Logic.

 Using this technique (i.e. passing a signal through a 

diffusion input in addition to the gate input), we were able to 

reduce the number of transistors needed to implement 

several logic gates.

 However, pass transistors presented several 

disadvantages, such as VT drop, static power dissipation, 

loss of regenerative property, and in certain situations, slow 

transitions.

 In this lecture, we will discuss another concept – dynamic 

logic – and its implementation into an efficient and very fast 

logic family.
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What will we learn today?
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DYNAMIC LOGIC

So now we’d like to reduce some gates and speed up our 

calculations. It’s time for
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Introduction

 So far, we’ve seen that:

» Standard CMOS require 2N transistors for N inputs.

» Pseudo nMOS requires only N+1 transistors, but has high static power 

consumption.

» PTL is only efficient for certain functions

 An alternative logic style called Dynamic Logic provides:

» N+2 Transistors for N Inputs

» Low Static Power Consumption

» High Operation Speed

 Dynamic Logic provides a very different approach to gate 

implementation, defining it as a completely different style 

than the previously discussed Static families.
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Dynamic Logic Concept

 Dynamic Circuits operate in two phases:

» Precharge: set an initial output state

» Evaluation: change the precharged output to the legal state.

 This is done with a basic architecture

that includes:

» A standard PDN network

» Complementary precharge switches

 This is an “n-type” network. 

The same can be accomplished 

using a “p-type” Pull-Up network.
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Dynamic Logic Concept - Precharge

 Precharge occurs when the clock is low, blocking the 

discharge path and enabling the pull up path.

 The output capacitance is charged to 

‘1’ through the top pMOS (the 

Precharge Transistor).

 The bottom nMOS eliminates 

static current and ratioed behavior. 

7



Digital Microelectronic Circuits The VLSI Systems Center - BGU Dynamic Logic

Dynamic Logic Concept - Evaluation

 Evaluation occurs when the clock is high. 

 The Precharge Transistor is turned off, 

blocking any additional charge from 

flowing to the output capacitance.

 The bottom nMOS (the Evaluation 

Transistor) is turned on, enabling a 

conditional path to ground.

 The output is discharged, depending 

on the input values and the 

combinational function of the PDN, 

similar to static logic families.
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Example – Dynamic Inverter

 When the clock is low, the capacitance is charged.

 When the clock goes high, the output is discharged if the 

input is high.

 If the input is low, the output stays high.
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Dynamic Logic Properties

 The operation of Dynamic Logic brings about 

a number of important properties:

» N+2 Transistors are required for gate 

implementation.

» The logic is Non-Ratioed

(i.e. sizing doesn’t affect functionality).

» Static Power Consumption is low, but Dynamic Power 

Consumption is significantly higher than Standard CMOS.

» The Switching Speeds are higher than Standard CMOS due to 

Reduced Load Capacitance, Zero Short-Circuit Current and 

ability to Optimize Only One Swing (tpHL).

10



Digital Microelectronic Circuits The VLSI Systems Center - BGU Dynamic Logic

Dynamic Logic VTC

 An Interesting (Bizarre) VTC

» Remember – assume DC…

» Until VTn, the output is VOH.

» Once we pass VTn, there is no partially

open pMOS combating the PDN, so in 

a DC perspective, output will fully 

discharge.

» The VTC drops STRAIGHT down to VOL.

» (If not DC, but bounded with time, 

the VTC will be more gradual…)

 NML=VTn. This is very low!
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Logical Effort of Dynamic Logic

12

pHLt :

2
2

n
eq inv

R
R R 

,

,min

3
1

3

gate d gate

inv d

R C
p

R C
   

2W

2W

WCLK

CLK

A

Cout

pLHt : 0, 0p LE 

 Therefore, we get a very fast gate!

 For a 2-input NAND, we get:
4

, 1
3

NAND NANDp LE 

  min2g gC A C

min3d dC C

,

,min

2

3

gate g gate

inv g

R C
LE

R C
  



Digital Microelectronic Circuits The VLSI Systems Center - BGU Dynamic Logic

Dynamic Logic Problems

 The basic consideration of using Dynamic

vs. Static Logic is Speed vs. Power.

 However, High Output Degradation can occur

in  Dynamic Logic in the following cases:

» Input Glitches

» Leakage Currents

» Charge Sharing

» Cascading dynamic gates
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CHARGE LOSS

The Big Problem with Dynamic gates is their
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Problem #1: Charge Loss

 Dynamic Logic only pulls up the output during

the Precharge Phase.

 Therefore, any current that is discharged can

only be replenished at the next clock phase.

 If a low input (that cuts off the PDN, leaving a 

high output) “glitches” from ‘0’ to ‘1’, a path

to ground temporarily opens, discharging some of the 

output.

 In addition, Static Leakage Current through the large nMOS 

transistors degrades the output level.
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Solution: Bleed Devices

 To fight the Charge Loss in an output node, a Bleed Device 

can be added:

 A small Pseudo-nMOS style pMOS is the basic

implementation

» This causes VOLmin>0.

» Static Current Dissipation.
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Example – Bleed Device

 We have to carefully size the bleed device to trade off level 

compensation and static current.

 To find the static current, assume the gate is in evaluation

with A=‘1’.
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Example – Bleed Device

 We now find the minimum output level.

 We can replace the two nMOS transistors with a single 

nMOS with Leq=L1+L2 (assuming they were sized with an 

equivalent W)
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Feedback Bleed Device

 A better way to attach a bleed device is using feedback.

 In this way the bleed device is cut off when Vout=‘0’

 We get:

» Rail to Rail Swing

» No Static Current

» No glitching problem

 But:

» We still have to make sure

the pull down network is 

strong enough to flip the

inverter.

» We need an extra 3 transistors*
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CHARGE SHARING

A secondary problem of Dynamic Gates is
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Problem #2: Charge Sharing

 Charge Sharing occurs when the PDN is closed, but one or 

more stacked transistors next to the output are open.

» The charge is shared between the output

capacitance and the diffusion capacitance

of the conducting transistor.

 One way to fix this is 

to Precharge these 

capacitances.
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Charge Sharing Example
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Charge Sharing Example

 How much charge is lost?

 We have to use Charge Conservation Equation:

 Just don’t forget to check if Vfinal>VDD-VT…
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DOMINO LOGIC

But the most interesting problem and solution comes with the need 

to hook up dynamic gates in a logic network, which brings us:
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Problem #3: Cascading Dynamic Gates

 The biggest drawback of Dynamic Logic is that 

Dynamic Gates cannot be Cascaded:

» During Precharge, the output of the 

Driving Gate is charged to VDD, 

turning on the PDN of the Cascaded Gate.

» During the Evaluation, it takes time to 

discharge the output of the Driving Gate 

(considering it should be Low). 

» During this time, the PDN of the 

Cascaded Gate is incorrectly conducting, 

discharging its output.

26



Digital Microelectronic Circuits The VLSI Systems Center - BGU Dynamic Logic

Cascading Gates Example
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Solution: Domino Logic

 One solution to the cascading problem is using

“Domino Logic”.

 Each Dynamic Gate is connected to an Inverter, causing the 

input of the next gate to be Low after Precharge.

 This solves the cascading

problem and buffering 

gates provides several 

other advantages.

 One major disadvantage 

occurs, though. 

 Can you guess what it is? (Hint: Universality)
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Domino Logic Example
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Solving the Rest of Our Problems…

 Now we can freely add our feedback bleed transistor…
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Can we reduce the transistor count?

 Since the output of domino is always low during precharge, 

we don’t actually need the evaluation transistor!

 However, we better be careful, because the precharge

must now propagate, creating a constraint on the 

precharge time!
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What about universality?

 Sometimes, logic restructuring works:
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Dual Rail Domino
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LOGICAL EFFORT OF DOMINO LOGIC

Finally, let’s see how domino gates behave in a logic network:
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Domino Logic Logical Effort
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Domino Logic Logical Effort

 We can improve this by using a “skewed inverter”

 For a standard Domino NAND, we got:

 But if we enlarge the pMOS 

of the inverter, we get:

 The “Average” LE (~stage effort) is:
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