

Digital Microelectronic Circuits (361-1-3021)

Presented by: Adam Teman

Lecture 9: Pass Transistor Logic

1

Digital Microelectronic Circuits

Motivation

- □ In the previous lectures, we learned about *Standard CMOS Digital Logic* design.
- CMOS is unquestionably the leading design family in use today, do to its many advantages and relative simplicity. However, it has a number of drawbacks that have led to the development of alternative solutions.
- □ The main drawback of *Standard CMOS* is its relatively large area (*2N transistors* to implement an *N-input gate*).
- In this lecture, we will learn about an alternative logic family that tries to reduce the number of transistors needed to implement a logic function, and achieve faster switching times.

What will we learn today?

9.1 Pass Transistor Logic

9.2 Extending the PTL Concept

9.3 Transmission Gates

9.4 PTL Logical Effort

Digital Microelectronic Circuits

9.1 Pass Transistor Logic

9.2 Extending the PTL Concept

9.3 Transmission Gates

9.4 PTL Logical Effort

What happens if we look at a MOSFET from the diffusions, instead of through the gate?

PASS TRANSISTOR LOGIC (PTL)

Digital Microelectronic Circuits

PTL Concept

- A popular and widely-used alternative to *Standard CMOS* is *Pass Transistor Logic (PTL)*.
- PTL attempts to reduce the number of transistors required to implement logic by allowing the *primary inputs* to drive *source* and *drain* terminals in addition to the *gate* terminals.
- Using PTL, we can reduce the number of transistors to implement a 2-input AND gate to 4 (instead of 6 for Standard CMOS).
- □ Broadening the *PTL Concept*, we can make some more interesting gates.

- □ The *Pass Transistor* concept is based on the use of *relay switches*.
- A number of inputs are connected to *switches* and only *one* of the switches is chosen to be transferred to the output.
- □ In essence, we have created a *Multiplexer*:

PTL Concept

A simplification of the relay multiplexer would be to connect two inputs to a single nmos transistor – one to the *gate* and the other to *one of the diffusions* (*source/drain*):

- □ It looks like we got an AND gate with a single transistor:
 - » When B=1, it passes A to the output.
 - » When B = 0 it *blocks* the output.
- But this is incorrect, as when the *nMOS* is *switched off* and the *output node* stays *floating*, its value depends on its *previous state*.

PTL AND Gate

- □ In fact, this type of a *switch* is often used in digital and analog circuits, but it is *not* an *AND gate*.
- □ We'll take this basic operation and produce an *AND gate* by adding a *path to GND* when $B=0^{\circ}$.
- We can get this by adding an *nMOS* with its *gate* connected to *B*_ and its *source* connected to *GND*.
- □ This is a basic *PTL AND Gate*!
- □ It's comprised of a total of 4 *transistors* because we need an *inverter* to get B_{-} .

Since M2 is cut-off, we can just remove it from our equivalent model:

Out

Example – t_{pd} of PTL AND Gate

Now let's mark the source and drain and the bias voltages:

□ We see that:

- » The gate's overdrive $(V_{GS}-V_T)$ is a function of the output voltage.
- » V_{DS} is a function of the output voltage.
- » V_{SB} is non-zero, so we have to regard the *body effect*.

Example – t_{pd} of PTL AND Gate

□ We'll check two points for delay, t=0 and $t=t_{pd}$:

$$\begin{array}{l} \text{ At } \textbf{t=0:} \\ V_{GS} = V_{DD} - 0 = V_{DD} \\ V_{DS} = V_{DD} - 0 = V_{DD} \\ V_{DSeff} = \min(V_{DS}, V_{DSAT}, V_{GT}) = V_{DSAT} \end{array} \right\} Vel.Sat \\ V_{SB} = 0 \Rightarrow V_T = V_{T0} \\ \text{ w At } \textbf{t=t_{pd}:} \\ V_{GS} = V_{DD} - \frac{V_{DD}}{2} = \frac{V_{DD}}{2} \\ V_{DS} = V_{DD} - \frac{V_{DD}}{2} = V_{DD} - \frac{V_{DD}}{2} \\ V_{DS} = V_{DD} - \frac{V_{DD}}{2} = V_{DD} - \frac{V_{DD}}{2} \\ V_{DSeff} = \min(V_{DS}, V_{DSAT}, V_{GT}) = V_{GT} \\ \end{array} \right\} Sat * V_{SB} = V_{out}(t) \\ V_{SB} = V_{out}(t) \\ V_{SB} = V_{out}(t) \\ \end{array}$$

Example – t_{pd} of PTL AND Gate

 \Box To find t_{pd} , we need to solve an *integral on the current*:

But since this is "long and ugly", we can probably just take average currents.

$$t_{pd} \approx c \frac{\Delta v_c}{i_{avg}} \approx c \frac{\frac{V_{DD}}{2}}{0.5(i_{t=0} + i_{t=t_{pd}})}$$

will *turn off*.

□ Well, we can see that V_{OHmax} of this gate is only V_{DD} - V_{Tn} , at which point the switch

another *PTL gate input* with this *output*.

This means that we cannot drive

- This AND gate has a big drawback...
 Remember that nMOS transistors pass a Weak '1'?
- **Cascading PTL AND Gates** *ate* has a big drawback...
 - $Y = A \cdot B$

 V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{DD} V_{Tn}

Pass Transistor Logic 13

 While this gate requires *less power* than a *CMOS AND* (*lower capacitance*, *reduced swing*), it may cause *static power* on the *partially on inverters* it drives.

- □ For example, let us cascade an inverter after a *PTL AND* gate and drive the input high.
- □ The output will be pulled up to V_{DD} - V_{Tn} , but due to the *body* effect, $V_{Tn} > V_{Tn0}$.
- □ The input to the next stage provides $V_{SGp} = V_{DD} - (V_{DD} - V_{Tn})$. If this is larger than V_{Tp} , then the *pmos* is conducting and *static* current will flow freely.
- \Box Even if it $V_{SGp} < V_{Tp}$, this transistor is in *weak inversion* and dissipates substantial static power.

PTL AND VTC

- □ We'll start with the VTC from A to Out with B=1?
- In this case, the output simply follows the input until the pass transistor closes at V_{DD}-V_T.

In other words, this input doesn't have the required *regenerative property* for a digital gate!

□ What about the VTC from B to Out with A=`1'? This case is more complex.

PTL AND VTC

- □ Starting at $B < V_T$, M1 is off and M2 is on. We get $V_{out}=0$.
- □ *M2* is on until $B=V_{DD}/2$, but when $B=V_T$, *M1* turns on. Therefore V_{out} will slowly rise with *B*. $V_{DD}-V_T$
- □ At $B=V_{DD}/2$, M2 turns off and M1 has no contention.
- □ Therefore, V_{out} will "jump" to $V_{DD}/2-V_T$ and rise linearly until $V_{OHmax}=V_{DD}-V_T$

PTL AND Gate Summary

□ *PTL* gates are *non-regenerative* and therefore *not digital*.

» To use them as digital gates they must be followed by a CMOS buffer!

□ *PTL* gates do not present a *rail-to-rail swing*

- » Therefore cascaded stages may dissipate static power.
- » Cascading PTL gates through gate inputs causes loss of signal and is therefore not allowed.

However, certain functions can be implemented with *fewer* transistors than CMOS

» And in certain cases, specific transitions may be faster.

Level Restoration

- One of the options to solve the problem of the *Weak* '1' is *Level Restoration*.
- □ This can be achieved by using a *PTL AND gate*, followed by an *inverter* with a *feedback loop* to a *pMOS* transistor.
 - » When node X is high (V_{DD}-V_{Tn}), the Inverter outputs a '0', opening the pMOS "bleed" transistor.
 - » This restores the level at X to V_{DD} .
 - » When node X makes a '1' to '0' transition there is a "fight" between the bleed transistor and the low input.

□ This means we need careful *Ratioed Sizing* to make the circuit work properly.

Level Restorer Sizing

- The level restorer "fights" the pass transistor when pulling down through the diffusion input.
- Therefore the pass transistor must be strong enough to flip the cascaded inverter.
- We will solve this problem by disconnecting the feedback loop:

□ Now we just have to make sure that the stable state of V_X is lower than the inverter's V_M .

$$I_{DSn}(sat) = I_{SDp}(vel.sat)$$

find $\frac{k_n}{k_p} \Rightarrow V_x < \frac{V_{DD}}{2}$

$$V_{SGp} = V_{DD}$$

$$V_{SDp} = V_{DD} - V_{x}$$

$$V_{GSn} = V_{DD}$$

$$V_{DSn} = V_{x}$$

Advice from the guys
 who write the test...
 Solve this problem at home!

9.1 Pass Transistor Logic

9.2 Extending the PTL Concept

9.3 Transmission Gates

9.4 PTL Logical Effort

So based on the pass transistor concept, let's try to compose some useful circuits

EXTENSION OF THE PTL CONCEPT

Digital Microelectronic Circuits

The VLSI Systems Center - BGU

YOU CANNOT

PASS

CPL

Using the *PTL concept*, we can assemble an interesting *highly modular* gate family called *Differential* or *Complementary Transmission Logic* (*DPL* or *CPL*).

- These gates inherently create *differential outputs*, in other words, both *a logic function* and *its complement*.
- These can reduce the overall transistor count, as the extra *inverters* aren't needed.
- CPL gates enable us to efficiently realize some complex gates, such as XORs and Adders with a relatively small number of transistors.

□ All CPL gates have the same topology, using 4 pass transistors and complementary inputs.

CPL

If we take the basic topology and connect different inputs, we can make many different functions:

If we take the basic topology and connect different inputs, we can make many different functions:

CPL

Α	B	f
0	0	0
0	1	Λ
1	0	1
1	1	1
Α	B	f
0	0	
0	1	
v		
1	0	

CPL

If we take the basic topology and connect different inputs, we can make many different functions:

Α	B	f
0	0	0
0	1	1
1	0	1
1	1	0
Α	В	f
A 0	B 0	f
A 0 0	B 0 1	f
A 0 0 1	B 0 1 0	f

Digital Microelectronic Circuits

Solving the Weak '1' Problem in CPL

9.1	Pass Transistor Logic
9.2	Extending the PTL Concept
9.3	Transmission Gates
9.4	PTL Logical Effort

So PTL has its drawbacks, but we will often find the concept used as part of the

TRANSMISSION GATE

The VLSI Systems Center - BGU

Pass Transistor Logic 29

bidirectional switch, passing a signal through when the *control signal* is *on*.

□ The symbolic representation of a

Transmission Gate is shown here:

- □ The basic *Transmission Gate* is a
- connected in *parallel*, utilizing the advantages of each. □ In this way, we can get both a *Strong* '1' and a *Strong '0'*, thus achieving a *full swing*.

□ The most commonly used implementation

of **PTL architecture** is in **Transmission Gates**.

□ These gates use an *nMOS* and a *pMOS*

Transmission Gates

Transmission Gates

- The Transmission Gate uses 4 transistors (the inverted control signal is needed to control the pMOS).
- This means that it doesn't necessarily *reduce the area* to implement logic functions, but in certain cases, *very efficient functions* can be easily realized.

Transmission Gate Example

- During a transmission gate transition, both transistors are on during the operation.
- One transistor passes a "strong signal" with maximum overdrive, while the other passes a much weaker signal.
- □ Let's take a '0' to '1' transition as an example:

□ As usual, we will mark the sources and drains.

- □ At the beginning of the transition, $V_{out}=0$, so both transistors are strongly velocity saturated.
- But as the output is charged, the resistance of the nMOS rises, while the resistance of the pMOS stays relatively constant.

$$I_{out} = I_n + I_p = k_n \left(\left(V_{DD} - V_{Tn} \right) V_{DSat,n} - 0.5 V_{DSat,n}^2 \right) + k_p \left(\left(V_{DD} - V_{Tp} \right) V_{DSat,p} - 0.5 V_{DSat,p}^2 \right)$$

$$\Box \text{ At } t = t_{pd}$$

$$I_{out} = k_n \left(\frac{V_{DD}}{2} - V_{Tn}\right)^2 + k_p \left(\left(V_{DD} - V_{Tp}\right) V_{DSat,p} - 0.5 V_{DSat,p}^2\right)$$

$$\Box \text{ At } V_{out} = V_{DD} - V_{Tn}$$

$$I_{out} = k_p \left(\left(V_{DD} - V_{Tp}\right) V_{DS} - 0.5 V_{DS}^2\right)$$

$$V_{in} \int V_{SGp} = V_{DD} - V_{out}$$

$$V_{SGp} = V_{DD} - V_{out}$$

$$V_{SGp} = V_{DD} - V_{out}$$

Resistance of Transmission Gate

Delay of TG Chain

- An interesting question is what happens if we cascade several Transmission Gates in series.
- □ So assuming one gate gives $t_{pd} = 0.69R_{eq}C_{dTG}$, we can draw the chain of gates as an RC chain.
- □ Given N gates and using the Elmore Delay, we get:

Delay of 16 TGs comes out 2.7 ns (for 0.25um technology)
 The transition (rise time) is slow.

Optimizing a TG Chain

 R_{eq}

 R_{eq}

 R_{eq}

□ To optimize this problem, we will insert a buffer every *m* TGs.

 R_{eq}

□ But what is the correct value of *m*?

R_{eq}

We already know how to optimize this type of problem...

 R_{eq}

$$\frac{\partial t_{buffered}}{\partial m} = 0$$

$$t_{buffered} = 0.69 \left(\frac{N}{m}\right) R_{eq} C_{d,TG} \left(\frac{m(m+1)}{2}\right) + \left(\frac{N}{m} - 1\right) t_{buf}$$
$$= 0.69 R_{eq} C_{d,TG} \left(\frac{N(m+1)}{2}\right) + \left(\frac{N}{m} - 1\right) t_{buf}$$

Optimizing a TG Chain

$$t_{buffered} = 0.69R_{eq}C_{d,TG}\left(\frac{N(m+1)}{2}\right) + \left(\frac{N}{m}-1\right)t_{buf}$$
$$\frac{\partial t_{buffered}}{\partial m} = 0$$
$$m_{opt} = 1.7\sqrt{\frac{t_{buf}}{C_{dTG}R_{eq}}} \approx 3 \qquad t_{pd} \propto N$$

Digital Microelectronic Circuits

2-Input MUX

The 2-input Multiplexer is a Universal gate that is very commonly used in digital circuits, especially for signal selection.

$$F = A \cdot S + B \cdot \overline{S}$$

Let's inspect its implementation in *Standard CMOS*:

» **PDN**:
$$\overline{F} = \overline{A \cdot S + B \cdot \overline{S}}$$

PUN:
$$\overline{F} = \overline{A \cdot S + B \cdot \overline{S}} = \overline{A \cdot S} \cdot \overline{B \cdot \overline{S}} = (\overline{A} + \overline{S}) \cdot (\overline{B} + S)$$

□ This implementation requires *10 or 12 transistors*:

 \rightarrow

Digital Microelectronic Circuits

B -

2-Input MUX

A-

 S_0

Using Transmission Gates, we can make the same circuit with only 6 transistors:

2-Input XOR

 Another example of an efficient *Transmission Gate* is the *XOR function*.
 This function is very useful, for instance in *parity* calculations.

 \rightarrow

□ With *Standard CMOS*:

PUN:
$$F = A \cdot \overline{B} + \overline{A} \cdot B$$

» **PDN**:
$$F = \overline{\overline{A \cdot \overline{B}} + \overline{A} \cdot B} = \overline{\overline{A \cdot \overline{B}} \cdot \overline{\overline{A}} \cdot \overline{B}} = \overline{(\overline{A} + B)(A + \overline{B})}$$

Here we've reached a whopping 12 transistors!

2-Input XOR

□ With *Transmission Gates*, we can do it with only **6**! » When **B=1**, the *input stage* is a **CMOS** *inverter* and the *Transmission Gate* is *closed*. Hence: $Y = A \cdot B$ » When B=0, the *input stage closes both transistors*, but the *Transmission Gate* is now *open*, so we get: $Y = A \cdot B$ RA $Y = A \cdot B + A \cdot B$

□ Together, we get our *XOR function*:

Last Lecture

Last Lecture

9.1 Pass Transistor Logic

9.2 Extending the PTL Concept

9.3 Transmission Gates

9.4 PTL Logical Effort

Okay, now let's go way beyond and figure out

PTL LOGICAL EFFORT

□ How do we go about calculating the LE of PTL?

- » Let's take a PTL AND gate.
- » We will arbitrarily size the gate with minimum transistors for calculation.
- » Now we need to differentiate between the various inputs, transitions, and also recognize what makes up the entire circuit.

□ Essentially, we have to recognize that:

- » Input A is driven through a Buffer.
- » Input B drives a gate.

B! is a different signal on a different path.

Out

PTL Logical Effort

□ So let's start with input *B* (with A='1'):

- » When $B=1^{\prime} \rightarrow 0^{\prime}$ we get:
- » The output discharges through the nMOS, so:

$$R_{eq} = R_{\min}$$

$$P = \frac{R_{gate}}{R_{inv}} \cdot \frac{C_{d,gate}}{3C_{d,\min}} = 1 \cdot \frac{2}{3} = \frac{2}{3}$$

$$U = \frac{R_{gate}}{R_{inv}} \cdot \frac{C_{g,gate}}{3C_{g,\min}} = 1 \cdot \frac{1}{3} = \frac{1}{3}$$

» It looks as if the PTL gate is a great driver!

□ But that was only one of numerous transitions...

Out

Do-D

B=0

PTL Logical Effort

» So driving a PTL through the gate input (B) is pretty good!

"PTL Logical Effort

\Box But what about the diffusion input (A)?

- When B='1' and A='0'→'1' we have the same model, but now the input is A.
- » Therefore the gate capacitance is that of an inverter = 3W.
- » Plus, the buffer's capacitance is initially discharged.

$$\begin{aligned} R_{eq} &= 0.5R_p + R_n = 2R_{\min} \\ C_g\left(A\right) &= C_{g,inv} = 3C_{g\min} \\ C_d &= C_{d,inv} + C_{out} = \left(3+2\right)C_{d\min} \end{aligned}$$

$$p = \frac{R_{gate}}{R_{inv}} \cdot \frac{C_{d,gate}}{C_{d,\min}} = 2 \cdot \frac{5}{3} = \frac{10}{3}$$

$$LE = \frac{R_{gate}}{R_{inv}} \cdot \frac{C_{g,gate}}{C_{g,\min}} = 2 \cdot \frac{3}{3} = 2$$

2W

Ā=0

» So we get really bad performance.

Out

Digital Microelectronic Circuits

So, using a PTL gate through the diffusions is really bad.

PTL Logical Effort

Pass transistor logic is a low transistor count CMOS alternative, but:

» It is non-digital, so every few stages we must insert a CMOS gate.

Summary

- » It suffers from depleted high levels, so we should consider using a level-restorer.
- » It is very asymmetric, so we should carefully analyze each path before using it.
- However, the concept of a pass transistor can be ver useful:
 - » We can build special gates (transmission gate, XOR, MUX)
 - » We can use it as a switch.
 - » We can build interesting logic families (CPL, GDI/etc.)

