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Motivation

 In the previous lectures, we learned about Standard CMOS 

Digital Logic design. 

 CMOS is unquestionably the leading design family in use 

today, do to its many advantages and relative simplicity. 

However, it has a number of drawbacks that have led to the 

development of alternative solutions.

 The main drawback of Standard CMOS is its relatively large 

area (2N transistors to implement an N-input gate).

 In this lecture, we will learn about an alternative logic 

family that tries to reduce the number of transistors 

needed to implement a logic function, and achieve faster 

switching times.
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What will we learn today?
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PASS TRANSISTOR LOGIC (PTL)

What happens if we look at a

MOSFET from the diffusions, 

instead of through the gate?
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PTL Concept

 A popular and widely-used alternative to Standard CMOS is 

Pass Transistor Logic (PTL).

 PTL attempts to reduce the number of transistors required 

to implement logic by allowing the primary inputs to drive 

source and drain terminals in addition to the gate terminals.

 Using PTL, we can reduce the number of transistors to 

implement a 2-input AND gate to 4 (instead of 6 for Standard 

CMOS).

 Broadening the PTL Concept, we can make some more 

interesting gates.
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Relay Multiplexers

 The Pass Transistor concept is based on the use of relay 

switches.

 A number of inputs are connected to switches and only one 

of the switches is chosen to be transferred to the output.

 In essence, we have created a Multiplexer:
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PTL Concept

 A simplification of the relay multiplexer would be to connect 

two inputs to a single nmos transistor – one to the gate and 

the other to one of the diffusions (source/drain):

 It looks like we got an AND gate with a single transistor:

» When B=‘1’, it passes A to the output.

» When B=‘0’ it blocks the output.

 But this is incorrect, as when the nMOS is switched off and 

the output node stays floating, its value depends on its 

previous state.
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PTL AND Gate

 In fact, this type of a switch is often used in digital and 

analog circuits, but it is not an AND gate.

 We’ll take this basic operation and produce an AND gate by 

adding a path to GND when B=‘0’.

 We can get this by adding an nMOS

with its gate connected to B_ and its 

source connected to GND.

 This is a basic PTL AND Gate!

 It’s comprised of a total of 4 transistors

because we need an inverter to get B_.
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Example – tpd of PTL AND Gate

 Let’s find the delay of a ‘0’’1’ transition from the diffusion 

input.

 Assume that at t<0, B=‘1’, A rises and Vout=0V

 Since M2 is cut-off, we can just remove it from our 

equivalent model:
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Example – tpd of PTL AND Gate

 Now let’s mark the source and drain and the bias voltages:

 We see that:

» The gate’s overdrive (VGS-VT)

is a function of the output voltage.

» VDS is a function of the output voltage.

» VSB is non-zero, so we have to 

regard the body effect.
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Example – tpd of PTL AND Gate

 We’ll check two points for delay, t=0 and t=tpd:

» At t=0:

» At t=tpd:
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Example – tpd of PTL AND Gate

 To find tpd, we need to solve an integral on the current:

 But since this is “long and ugly”, we can probably just take 

average currents.
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Cascading PTL AND Gates

 This AND gate has a big drawback...

 Remember that nMOS transistors pass 

a Weak ‘1’? 

 Well, we can see that VOHmax of this gate 

is only VDD-VTn, at which point the switch 

will turn off.

 This means that we cannot drive 

another PTL gate input with this output.
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Cascading PTL AND Gates

 However, we can connect the output

to the next gate’s diffusion input:

 There is some signal degradation, so we need to add a 

CMOS Inverter every few gates to replenish the level.

 While this gate requires less power than a CMOS AND 

(lower capacitance, reduced swing), it may cause static power 

on the partially on inverters it drives.
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Static Power Problem

 For example, let us cascade an inverter after a PTL AND 

gate and drive the input high.

 The output will be pulled up to 

VDD-VTn, but due to the body 

effect,VTn>VTn0.

 The input to the next stage 

providesVSGp=VDD-(VDD-VTn). 

If this is larger than VTp, then 

the pmos is conducting and static 

current will flow freely.

 Even if it VSGp<VTp, this transistor is in weak inversion and 

dissipates substantial static power.
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PTL AND VTC

 To analyze the static properties of the PTL AND gate, we 

will draw its VTC. 

 We’ll start with the VTC from A to Out with B=‘1’

 In this case, the output simply 

follows the input until the pass 

transistor closes at VDD-VT.

 In other words, this input doesn’t 

have the required regenerative 

property for a digital gate!
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PTL AND VTC

 What about the VTC from B to Out with A=‘1’? This case is 

more complex. 

 Starting at B<VT, M1 is off and M2 is on.

We get Vout=0.

 M2 is on until B=VDD/2, but when

B=VT, M1 turns on. Therefore

Vout will slowly rise with B.

 At B=VDD/2, M2 turns off and 

M1 has no contention.

 Therefore, Vout will “jump” to

VDD/2-VT and rise linearly until

VOHmax=VDD-VT
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PTL AND Gate Summary

 PTL gates are non-regenerative and therefore not digital.

» To use them as digital gates they must be followed by a CMOS 

buffer!

 PTL gates do not present a rail-to-rail swing

» Therefore cascaded stages may dissipate static power.

» Cascading PTL gates through gate inputs causes loss of signal and 

is therefore not allowed.

 However, certain functions can be implemented with fewer 

transistors than CMOS

» And in certain cases, specific transitions may be faster.
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Level Restoration

 One of the options to solve the problem of the Weak ‘1’ is 

Level Restoration.

 This can be achieved by using a PTL AND gate, followed by 

an inverter with a feedback loop to a pMOS transistor.

» When node X is high (VDD-VTn), the

Inverter outputs a ‘0’, opening the 

pMOS “bleed” transistor.

» This restores the level at X to VDD.

» When node X makes a ‘1’ to ‘0’

transition there is a “fight” between 

the bleed transistor and the low input.

 This means we need careful Ratioed Sizing to make the 

circuit work properly.
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Level Restorer Sizing

 The level restorer “fights” the pass transistor when pulling 

down through the diffusion input.

 Therefore the pass transistor must be strong enough to flip 

the cascaded inverter.

 We will solve this problem by disconnecting the feedback 

loop:
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Level Restorer Sizing

 Now we just have to make sure that the stable 

state of VX is lower than the inverter’s VM.
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EXTENSION OF THE PTL CONCEPT

So based on the pass transistor

concept, let’s try to compose

some useful circuits
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CPL

 Using the PTL concept, we can assemble an interesting 

highly modular gate family called Differential or 

Complementary Transmission Logic (DPL or CPL).

» These gates inherently create differential 

outputs, in other words, both a logic function 

and its complement. 

» These can reduce the overall transistor 

count, as the extra inverters aren’t needed.

 CPL gates enable us to efficiently realize some complex 

gates, such as XORs and Adders with a relatively small 

number of transistors.

 All CPL gates have the same topology, using 4 pass transistors

and complementary inputs.
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CPL

 If we take the basic topology and connect different inputs, 

we can make many different functions:
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CPL

 If we take the basic topology and connect different inputs, 

we can make many different functions:
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CPL

 If we take the basic topology and connect different inputs, 

we can make many different functions:
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Solving the Weak ‘1’ Problem in CPL

• Doesn’t load the output.

• Less of a ratio problem 

(the restorer is turned off by the opposite circuit).

27

N1

N2

N3

N4



Digital Microelectronic Circuits The VLSI Systems Center - BGU Pass Transistor Logic

TRANSMISSION GATE

So  PTL has its drawbacks, but we will often find the 

concept used as part of the 
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Transmission Gates

 The most commonly used implementation 

of PTL architecture is in Transmission Gates.

 These gates use an nMOS and a pMOS

connected in parallel, utilizing the 

advantages of each.

 In this way, we can get both a Strong ‘1’

and a Strong ‘0’, thus achieving a full swing.

 The basic Transmission Gate is a 

bidirectional  switch, passing a signal 

through when the control signal is on.

 The symbolic representation of a 

Transmission Gate is shown here:
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Transmission Gates

 The Transmission Gate uses 4 transistors 

(the inverted control signal is needed to 

control the pMOS).

 This means that it doesn’t necessarily 

reduce the area to implement logic 

functions, but in certain cases, very 

efficient functions can be easily realized.
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Transmission Gate Example

 During a transmission gate transition, both transistors are 

on during the operation.

 One transistor passes a “strong signal” with maximum 

overdrive, while the other passes a much weaker signal.

 Let’s take a ‘0’ to ‘1’ transition as an example:
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Transmission Gate Example

 As usual, we will mark the sources and drains.

 At the beginning of the transition, Vout=0, so both transistors 

are strongly velocity saturated.

 But as the output is charged, the resistance of the nMOS 

rises, while the resistance of the pMOS stays relatively 

constant.
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Transmission Gate Example

 At t=0:

 At t=tpd:

 At Vout=VDD-VTn:
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Resistance of Transmission Gate
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Delay of TG Chain

 An interesting question is what happens if we cascade 

several Transmission Gates in series.

 So assuming one gate gives tpd=0.69ReqCdTG, we can draw 

the chain of gates as an RC chain.

 Given N gates and using the Elmore Delay, we get:
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Delay of TG Chain

 Delay of 16 TGs comes out 2.7 ns (for 0.25um technology)

 The transition (rise time) is slow.
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Optimizing a TG Chain

 To optimize this problem, we will insert a buffer every m

TGs. 

 But what is the correct value of m?

 We already know how to optimize this 

type of problem…

37

 
,

1
0.69 1

2
buffered eq d TG buf

m mN N
t R C t

m m

    
      

    

 
,

1
0.69 1

2
eq d TG buf

N m N
R C t

m

   
     

  

0
bufferedt

m








Digital Microelectronic Circuits The VLSI Systems Center - BGU Pass Transistor Logic

Optimizing a TG Chain
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2-Input MUX

 The 2-input Multiplexer is a Universal gate 

that is very commonly used in digital circuits, 

especially for signal selection.

 Let’s inspect its implementation

in Standard CMOS:

» PDN: 

» PUN:

 This implementation requires 10 or 12  transistors:
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2-Input MUX

 Using Transmission Gates, we can make the

same circuit with only 6 transistors:
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2-Input XOR

 Another example of an efficient 

Transmission Gate is the XOR function.

 This function is very useful, for instance 

in parity calculations.

 With Standard CMOS:

» PUN:

» PDN:

 Here we’ve reached a whopping 

12 transistors!

41

  F A B A B A B A B A B A B          

F A B A B   

F A B A B   



Digital Microelectronic Circuits The VLSI Systems Center - BGU Pass Transistor Logic

2-Input XOR

 With Transmission Gates, we can do it with only 6!

» When B=‘1’, the input stage is a CMOS

inverter and the Transmission Gate is

closed. Hence: 

» When B=‘0’, the input stage closes both

transistors, but the Transmission Gate is

now open, so we get: 

 Together, we get our XOR function: 
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Last Lecture

 Pass Transistor Logic
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Last Lecture

 Transmission Gates
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PTL LOGICAL EFFORT

Okay, now let’s go way beyond

and figure out
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PTL Logical Effort

 How do we go about calculating the LE of PTL?

» Let’s take a PTL AND gate.

» We will arbitrarily size the gate with 

minimum transistors for calculation. 

» Now we need to differentiate

between the various inputs, 

transitions, and also recognize

what makes up the entire circuit.

 Essentially, we have to recognize that:

» Input A is driven through a Buffer.

» Input B drives a gate. 

B! is a different signal on a different path.
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PTL Logical Effort

 So let’s start with input B (with A=‘1’):

» When B=‘1’’0’ we get:

» The output discharges through

the nMOS, so:

» It looks as if the PTL gate is a great driver!

 But that was only one of numerous transitions…
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PTL Logical Effort

 Now when B=‘0’’1’:

» The output charges through the

series connection of the buffer’s 

pMOS and the PTL nMOS:

» So driving a PTL through the gate input (B) is pretty 

good!
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inv g

R C
LE

R C
    

The only relevant 

transition is when A=1
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PTL Logical Effort

 But what about the diffusion input (A)?

» When B=‘1’ and A=‘0’’1’ we 

have the same model, but now

the input is A.

» Therefore the gate capacitance is that

of an inverter = 3W.

» Plus, the buffer’s capacitance is initially discharged.

» So we get really bad performance.
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min0.5 2eq p nR R R R   ,

,min

5 102
33

gate d gate

inv d

R C
p

R C
    

W

W

Out

W

2W
A=0

  , min3g g inv gC A C C 

 , min3 2d d inv out dC C C C   
,

,min

3
2 2

3

gate g gate

inv g

R C
LE

R C
    
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PTL Logical Effort

 The opposite transition is similar:

» Now A=‘1’’0’.

 So, using a PTL gate through the diffusions is 

really bad.
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min2eq n nR R R R  

,

,min

5 10
2

3 3

gate d gate

inv d

R C
p

R C
    

W

W

Out

W

2W

A=1

  , min3g g inv gC A C C 

 , min3 2d d inv out dC C C C   

,

,min

3
2 2

3

gate g gate

inv g

R C
LE

R C
    
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Summary

 Pass transistor logic is a low transistor count CMOS 

alternative, but:

» It is non-digital, so every few stages we must insert a CMOS gate.

» It suffers from depleted high levels, so we should consider using a 

level-restorer.

» It is very asymmetric, so we should carefully analyze each path 

before using it.

 However, the concept of a pass transistor can be very 

useful:

» We can build special gates (transmission gate, XOR, MUX).

» We can use it as a switch.

» We can build interesting logic families (CPL, GDI, etc.)
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