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Motivation

 In the previous lecture, we learned about 

Standard CMOS Digital Logic design. 

 CMOS is unquestionably the leading design family in use 

today, do to its many advantages and relative simplicity. 

However, it has a number of drawbacks that have led to the 

development of alternative solutions.

 The main drawback of Standard CMOS is its relatively large 

area (2N transistors to implement an N-input gate).

 In this lecture, we will start to overview a number of 

alternative logic families that try to reduce the number of 

transistors needed to implement a logic function.
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What will we learn today?
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RATIOED LOGIC

Let’s start with an important 

concept that has driven a number 

of logic families:
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Ratioed Logic Concept

 When we discussed Standard CMOS during the previous 

two lectures, we spent quite a while analyzing the 

sizes of the transistors.

 It is important to note that these sizing considerations 

improved the performance (=speed) of the logic gates, 

but not their functionality.

 In other words, even if we implemented the gates 

without size considerations, we would arrive at the 

requested logic function (though it might take a while…).
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Ratioed Logic Concept

 Ratioed Logic is an attempt to reduce the number of 

transistors required to implement a given logic function, 

waiving the assurance of functionality.

 As its name implies, in order to ensure functionality, a 

certain ratio of sizes has to be kept between various devices 

that make up the gate.

 Ratioed Logic has another great disadvantage – high static 

power dissipation – which makes it vary scarcely used. But 

the concept is implemented in quite a few complex circuits 

(such as memory circuits), and so it is important to 

understand.
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Ratioed Logic Concept

 The concept of Ratioed Logic uses the same Pull Down Network

as CMOS, but uses a simple Load as its Pull Up Network.

 This Load constantly leaks current from the supply to the output 

capacitance. In this way, the output is charged when the PDN is 

closed, providing a ‘1’.

 On the other hand, the Load’s resistance

is much larger than that of an open PDN,

so when the PDN is open, the output is 

pulled down to VOL.

 The ratio between the resistance of the 

Load and the PDN is crucial in designing

such a gate, hence it is called 

“Ratioed” Logic.
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VTC of Generic Ratioed Logic Gate
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Ratioed Logic Characteristics

 N transistors + Load





 Asymmetrical Response

 Static Power Consumption

 Slow pull up:
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Load Implementation

 Early Ratioed Logic designs used a simple 

resistor as the Load. 

 This approach had several drawbacks, 

especially with the difficulty in resistor

implementation in VLSI.

10



Digital Microelectronic Circuits The VLSI Systems Center - BGU Lecture 8: Ratioed Logic

Load Implementation
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 Accordingly, the Load was replaced with a 

Diode-connected nMOS (VGD=0) a.k.a. 

Saturated Load Inverter. 

 This circuit stopped conducting at 

VGS=VDD-VTn (weak ‘1’) providing a largely 

reduced swing.
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Load Implementation

 To improve the swing, the nMOS (also 

known as an “enhancement mode” nMOS) 

was replaced with a “Depletion Mode” nMOS. 

 This is a special, highly doped nMOS

with a negative threshold voltage (VTn<0).

 This was used for some time until the 

Pseudo nMOS inverter was invented, 

replacing the nMOS load with a pMOS connected to ground.
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PSEUDO NMOS
The only really surviving ratioed logic family is:
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Pseudo nMOS

 The topology of a Pseudo nMOS gate

is shown in the following figure:

 The clear advantage of this gate over Standard CMOS is the 

reduced number of transistors:

» N+1 transistors to implement an N-input gate.
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Pseudo nMOS

 Using a pMOS in the PUN, we get a 

Strong ‘1’ when the PDN is closed, 

so VOHmax=VDD.

 On the other hand, when the PDN is 

open, there is a “fight” between the 

PDN and the pMOS load.
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Pseudo nMOS

 To calculate VOLmin, we will equate the pMOS saturation 

current with the PDN current, assuming that it consists of 

nMOS devices in Linear Mode. 

 We will mark the drive strength of the PDN as kneq and 

assume short channel devices*:
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Pseudo nMOS

 Making a few minor assumptions, we arrive at:

 So to get a Low VOLmin, we need the

pMOS to be much smaller than the 

equivalent width of the nMOS

network. 

 Making the pMOS small means 

a small charge current, resulting 

in a large tpLH!
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Pseudo nMOS

 In addition, we get static power dissipation from the direct 

path between VDD and GND when outputting a ‘0’:

 Accordingly, Pseudo nMOS won’t usually be used

in low power or high frequency applications.
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Pseudo nMOS

 However, when large fan-in

gates are needed, the 

reduced transistor count 

can be attractive.

19



Digital Microelectronic Circuits The VLSI Systems Center - BGU Lecture 8: Ratioed Logic

VTC of Pseudo NMOS
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Pseudo NMOS Characteristics Summary

 Small β ratio (small pMOS, big PDN):

» Lower VOL

» Better Gain

» Less static power

» Fast tpHL

 But…

» Slow tpLH

» Bigger capacitive load

 In general:

» N+1 Transistors

» Only 1 NMOS load to previous stage

» Make sure RPMOS resistance at least 4 x RPDN
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LOGICAL EFFORT OF PSEUDO NMOS

Now we can compare this logic family using our previously 

developed design methodology:
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Pseudo-NMOS – Rising Edge

 tpLH is simply through the pMOS:

 Let’s look at the Logical Effort parameters of this transition:
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Rising Edge Logical Effort

 Now it is straightforward to 

calculate the LE parameters.
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Pseudo-NMOS – Falling Edge

 But what about tpHL?

» Let’s find the Thevenin Equivalent:

» So we would expect:

» But the swing is VDD/2, not VThevenin/2

» So it actually takes a bit longer to discharge.
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Response on Falling edge

 The smaller RPUN:

» The smaller the swing, so it takes less time to reach 0.5(VOH-VOL)

» But the longer it takes to reach 0.5VDD !
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Falling Edge Logical Effort

 tpHL presents a new problem:

» Both the PUN and PDN are conducting.
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Pseudo nMOS Logical Effort

 What is the actual R?

» Available Current is the difference between PDN and PUN.

» The current is approximately proportional to the resistance.
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Pseudo nMOS Logical Effort

 So the parameters for pull down:
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Pseudo nMOS Logical Effort - Summary

 So to summarize:

» With β=1 (high VOL), we got:

» Our LE is LOWER than an inverter!

» But don’t forget we have depleted noise margins and we 

have static power…

» With β=4 (more realistic), we got:

» Our HL transition has much better performance than 

CMOS!

» But the LH transition is much worse.
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Last Lecture

 Pseudo NMOS
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Last Lecture

 Rising Edge (easy):
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Last Lecture

 Falling Edge (“complicated”):
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Another Example

 What if we were to give the pMOS a long L?

» Say we want β=4, so we would choose Wp/Lp=Wmin/4Lmin
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