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This Week - Motivation

a The Inverter, or NOT gate, is truly the In Out
nucleus of all digital designs. 0 1
a We will analyze the inverter and find its 1 0

characterizing parameters.
a Once its operation and properties are |,

Out

clearly understood, designing and

analyzing more intricate structures, such _

as NAND gates, adders, multipliers and 1
microprocessors is greatly simplified. ~qE

a This lecture focuses on the static CMOS ~ — [V L

Inverter — the most popular at present and _""%L

the basis for the CMOS digital logic family. L
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As usual, we'll start with

AN INTUITIVE EXPLANATION
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An Intuitive Explanation

3 A Static CMOS Inverter IS modeled on

the double switch model.
Q The basic assumption is that the y,
switches are Complementary, i.e. @ Y

when one IS on, the other Is off.

2 When the top switch IS on, the supply
voltage propagates to the output
node. —

2 When the bottom switch IS on, the
ground voltage IS propagated out.
VISt
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An Intuitive Explanation ,d = ), !'4'

a Now we will replace the model switches V
with real voltage controlled switches —
MOS Transistors.

0 We will use complementary transistors —
— one nMOS and one pMOS, and hook
them up to the same input voltage. v :v

2 Now, when we set a high input voltage, s
the nMOS is on and the pMOS off. The
ground voltage propagates.

2 When we put a low input voltage, the L
PMOS is on and the nMOS is off. The \J ~> 0=0
supply voltage propagates.

0 We've built an inverter! 0—> \/=1 5
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An Intuitive Explanation ‘ d{fh

Q The voltage connected to the Source of the pMOS is
known as the “Supply Voltage™ or V.*

a We mark the connection to V5 with a horizontal or
slanted bar.

a Accordingly, Vg represents a logical ‘1’ and GND
represents a logical ‘0.

a Inputting Vpp to the CMOS inverter will present GND
at the output. Inputting GND will present Vg at the
output.

Q This characteristic is non-trivial and is one of the
advantages of CMOS design. It is known as “Rail to

1 1 9 k%
Rail Swing”.
g * It can also be called V., regarding the Collector of BJT transistors.

** “Rails” are the supply voltages, i.e. Vpp and GND. If a voltage is connected 7
to the NnMOS Source instead of GND, we refer to this voltage as V. “I.SI
Systems Center.
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4.1 An Intuitive Explanation

A\

L4.2 Static Operation

”~

L‘I.B Pynamic¢ Operation

”~

4.4 Power Consumption
\_

7~

4.5 Summary

A

Now that we understand the principles,
we’'ll analyze

STATIC OPERATION

VISt
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Reminder: The Unified MOSFET Model

Lo 10 | | | , 510 | .
’\‘/(j\ My / Py
2t 1 r ﬁ;ﬁ‘;
VGS=2.0\{) /
1.5 ]

il VGS=1.5Y

VGS=1.0M

A THL A : T
DSeff = min (VGSn _VTn’ VDSn’ VDSATn)
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Reminder: Static Properties

/\\,OUV
aVIC q -

\’ -~ ~
2 Noise Margins '““r /

\Ia(zm\)( - ‘LJ‘L
Vi V >

L 'y
Vi

VIS}
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WT/M The Inverter’s VTC

-l
Q To construct the VTC of the CMOS inverter, ))L

we need to graphically superimpose the I-V , i
curves of the nMOS and pMOS onto a Is
common coordinate set. VSGB-P/S 0\ Veop
a We can see that: —a «oh
P1
ISDp — IDSn Ve Voo
| D DD
—_ S - = VauV
VGSn _Vln VSGp —VDD VIn y Q1 sh DSn
in S
GSn
VDSn :Vout VSDp :VDD _Vout =

VIS§
|

Systems Center.
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The Inverter’s VTC

a Since V,;, and V_, are the input and output voltages of the
nMOS transistor, we will change the coordinates of the

PMOS.

lsp

_ _ V. =0 Voo, =2.5
Vout _VDD VSDp ; o
V4215 Veey=1
Vin :VDD _VSGp
V(mp
IDSn — ISDp
For Vpp=2.5V
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The Inverter’s VTC

0O Nosvinher seittsuperfiinmposss o chod ifees gMESshvves itves DC
tpenaM@diNtgrapiesie the currents of the nMOS and pMOS
are equal.

IDS
An
Vin:O “Vin:VDD

VIS}
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The Inverter’s VTC

a Putting all the intersection points on a graph with the
corresponding output voltage will give us the CMOS
inverter's VTC: Vout

AN
VDD

V.

In

DD .
Vis;

Systems Center.
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Intuitive Operating Regions

25

VGS=25V

VGS=2.0\.

VGS=1.5

\//\OUt 0.5¢ VGS=1.0
Vb ,
0 05 1 VosV) L 2 25
]
Vg;/, | '.
o R ) X i
P
VDD/2 ')o -\l‘f = \j OD -
Vm'. .'Vout k
D <
‘| 0
\'y0) || N
=

Vo2 23

Digital Microelectronic Circuits The VLSI Systems Center - BGU Lecture 4: The CMOS Inverter 16




Operating Regions %:, .

a Let’'s figure out what region of operation each transistor is in

throughout the VTC curve.* * Considering Long Channel Transistors
With Vo<Vpp/2

os Q‘( e
V.., ~
AU /g{\cdﬂ /\ Vm <VT

Vg, =V, <V. — Cutoff
I

:VDD _Vin >VT

— Linear
Vool2 VSDp :VDD -V

Vi Vppl2 Vop " \".S

Svsmms(:emer
Digital Microelectronic Circuits The VLSI Systems Center - BGU Lecture 4: The CMOS Inverter 17



Operating Regions

QO So now, let’s jump to the other side of the VTC.

Vin > VDD _VT

Y/

pout

VDD
ﬂvip =V, =V, <V; — Cutoff

Ve, =V >V, =V, >V, i
osn P }—) Linear

Voo/? VDSn _V <VGSn V
_Lin
‘A\U’;o(, UH”“
Vv —
an _________ prE—— V. -
Vpp/2 Vopo-Vr VDD% ) VIS

Svsmmscemer
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1 oS
/() | | |
B Operating Regions gy
a Now, back to the VTC regions. Let's see what happens Vis
when we raise the input voltage slightly past V. b7~\1
WL’ e R
Vout \) SN 9““
[ m'\°4" Vi, >V, %)
Vo e Vsep »| Vs
Vout G "1 ‘p"’o
: V... =V. >V. q ]
: GSn in T }: Sat
: Vosn =Vour = Voo > Vesn — Vo V. ; Dut),\lw
Vsop = Voo ~Vin > Vs — Linear S Vg
VSDp =Vip _Vout —0 <VSGp —V; l\
|
I VGSn 7
4 | —
~ Vin - By
V+4V Vb “I.SI
Systems Center.
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Operating Regions

a The same when V;, is a bit more than V; lower than V.

Y/

/OUt

VDD

out

Vin :VDD _VT - AV

—\ VSGW S VS p"d'b
R

Veo, =Vop —Viy > Vs o O| S
—> oa

Veoo =V —Vau = Voo > Vee, —Vs

out
1 ‘

Vin* '

th
Vo, =V, >V, —F"
oo — Linear | —
Visn =Vou = 0 <Vgg, = V5 | —}
VGSn\ A\:

PMS S+ '
-------- \ N Mos -kia —l—

*ﬁ Vm
\us
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Operating Regions /

a Finally, we have the middle area, where: e {___s>

) V. =V, /2+AV ,lﬁ

/OUt
VDD VSGp :VDD —Vin zVDD/Z >V-|- } . sat VSGW_S VSDp
VSDD =Vio —Vour Vop /2 >VSGp =V, a
i P1
= ~ D
VGSn _Vin NVDD/Z >VT } — Sat Vire SOV out
(T 'VDSn — Vout z\_/ED/ZiVGSn _VL Gl _D'

\ | s, PIese |0
: VG%\%.
: ;Vin -

Vpp/2 Voo VIS?
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Operating Regions Static [0S

Q To Sum it up:

v NMOS - off - Towards the ralls, one of the transistors
£ PMOS - res IS cut off, and the other Is resistive.
VDD ~

- Once the cut off transistor starts
\ conducting, it immediately is saturated.

As we approach the middle input
voltages, both transistors are saturated.

The VTC slope is known as the Gain of
the gate.

nNMOS —res
PMOS - off

VIS}

Systems Center.
Digital Microelectronic Circuits The VLSI Systems Center - BGU Lecture 4: The CMOS Inverter 22




Switching Threshold

a The Switching Threshold, V,,, Is the point where V; =V
0 This can be calculated:
» Graphically, at the intersection of the VTC with V; =V,

Vo o Qoo«‘ T
\ % —0S5n ~ /[G?(’
S+ Sut

» Or analytically, by equating the nMQOS and pPMOS saturation currents
with V; =V
VISt
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Switching Threshold

Q But let’s start with the intuitive a roach..
o w! Wy,
il
—

—_— — \\IF?\_/'D.

l
L1

]
y W

1

\'lSI
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Switching Threshold V.2 Mlu) =22

Q Let’s analytically compute V,,.
» Remember, the saturation current for a MOSFET is given by:

IDS

k
2

= _(VGS _VT ) 1

)

» Lets assume A=0 and we'll equate the two currents:

=

K
P (VEp _VTPA

; (VGSn _VTn)2 =

» Now we’ll substitute:

—

’V (%*\ ’EGO{ ) _—

-
ANy

'

s

» And we’ll arrive at;:

2 —— Vire }th
Vosn =Vin =Vu|  Magp =Voo =Vin = Voo —Vy - r:
N\
gt ) [ER o
1+{/ “ VISt
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Switching Threshold

a As we can see, r is an important factor in
setting the switching threshold.

Q ris a design parameter, that is set by the o
drive strength ratios of the nMOS and pMOS: |
S
L W W G
rIong_channel = k_: K = K T — IUCox T _(4 P*:j
Vm" "Vout
O Using the current equations again, we can I
find the drive strength ratio for a desired V. N1
S
2
ﬁz( VM _VTn ] _._
Ky |\ Voo =V —Vi -

| ]
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Switching Threshold

a A symmetric VTC (V,=Vpp/2) Is often des/ir,ed\ln this case:

v Voo Vi 7V Vs, _ [V%j :@ n [V%j W=,
MEAY

2 1+

a Generally, the same length (L) IS taken for all transistors
In digital circuits, and so for a symmetric VTC:

N R
Wp _ /un ~ T/\_\ \
J 2 -Y ™ = 7 ~2..4 \/ |
|
A ( (
L\ L>

IS}
Systems cemerI
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Reminder: Noise Margins

VOHmax N VDD

E"’ N, NMy, =Voumin =Vin

\/‘ & S

VOHmin

VOLmax ) )
) 0

VOLmin o

NM L :Vu_ _VOLmax

—-GND e

NM =min(NM_,NM,,) s
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Noise Margins

0 One of the CMOS logic family’s advantages is a Full Rail to

Rail Swing. In other words: V _\
OHmax =~ "DD

VOLmin — GND

a To calculate the Noise Margins, we will need to find V,_ and
V4. These are the points where the gain is -1. T

> V, t
. . VDD
Q To do this we will equate the
currents:

» V| 2nMOS sat, pMOS res
» V;y>nMOS res, pMOS sat

VDD Vin “I.S%

Systems Center.
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Noise Margins
b Losa = Isi) P

Q Let's salculate V V., 2 K, 2
los, (res) = kn (VGSn -V, )VDSn ——|= IDSp (Sat) = ?(VGSp _VTp)

T 2 | =
0 Assuming matching devices (k,=k;, V,=Vy)

Vo
56 (VIN —V; )Vout _"Og't_ - E(VDD —Viy _VT)
N

a Differentiating and equating -1, we reach:

1
Vin zg(WDD _2VT)

a Doing the same for V,, or using symmetry, we reach:

1
Vi zg(g\/DD +2VT)

a Accordingly, for a matched long-channel device, and
assuming Voymin 2Voumax @Nd Vo may VoL min IN CMOS, we get:

tems (:emerI

30

NMy =NM =V, -V, =V, _C€
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Noise Margins

Q The previous analysis "assumed” many things and
therefore SHOULD NOT be memorized.

Q Let us look at the noise margins intuitively to try
and understand trade offs: NMY :@A»Vw
= - NML‘: V'L“V,M“/
0 \ @
e ”3{%‘5
WISt
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Summary of Static Properties

a When VIn<VT or Vin>VDD-VT, one of the networks
(PUN/PDN) is off, providing Rail to Rail Swing.

a The skew of the VTC is set by the sizing ratio
between the PUN and PDN.

a Analytic Noise Margin calculation is rigorous and
approximation should be used when possible.

.é/_.

—
5y
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Now that we see how the inverter behaves in
steady state, we will analyze it’s transient:

DYNAMIC OPERATION
VIS}

Systems Center.
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Reminder: Dynamic Properties

- i5[’l,|-‘ '“U{’Hv /3’074 20'J0?
>~ ™S 0% Jn7

Q Propagation Delay JCM
a Rise/Fall Time A

VIS}

Systems Center.
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Parasitic Capacitances bWMf""g

0 Remember that our transistors have capacitance connected
to the output node.

a We'll calculate the capacitance values
in the next lecture, but for now, let’s just

use and equivalent output capacitance. >
a When the input is low our pMOS is a e
non-linear resistor and our nMOS s _Ol P1 /qu
cut off, so we get a simple RC circuit. + v _ VDTD
a Our capacitance is charged, bringing Ceq

the output voltage to V.

| N
L 1=

SvsmmscemerI
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Parasitic Capacitances

a When the input is high, we essentially have closed the top
switch and opened the bottom one.

QO This creates a resistive path from the capacitor to GND, and
blocks the path from the supply to the output. 1

a Again we have an RC network, though this time 1
we are just discharging the capacitance to GND. a

0 We end up with an output equal to GND. v,
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Parasitic Capacitances

0 So we saw that, a switching CMOS inverter charges and
discharges a parasitic output capacitance.

a During the switching process, we can create a model that
will transform the circuit into a simple RC network.

Q In this way, we can easily derive a first order analysis of the
CMOS dynamic operation for propagation delay and power
consumption calculation.

l (A
1) oo
X ’ v

A Ca 0067 K(// m“m"!.cﬁr:‘/l@:g
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Parasitic Capacitances

Qa For now, let us make the following assumptions:

» A transistor has a gate capacitance that is proportional
to its area (W*L)

» A transistor has a diffusion capacitance that is C’T:Wl b%

proportional to its width (W) / &

(GY S . é/{
_ ! A - (b = —

(—» (H /T \71 @?‘ | %C:fo:?/ @ U

Ce, " &7"% 6 Cop X W
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Parasitic Capacitances

a For now we will use a very simple model to represent all
the parasitic capacitances between the output node and
ground.

Driver (" ) ‘5 /'

C"V* Cint Cext (’ ]/\

VIS§
|

Systems Center.
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Propagation Delay

O Using our simple model for load capacitance, we can write:

s ¢ ¢ €4 AL
‘JM—_%l C T V lL/J J-tz l(’jt _ % C,o (VOut )dvout
4

—_ J Ve -
j, dt * Cﬁ)‘(/’cm D VJon | (Vour )

0 Assuming an ideal step at the input, the propagation delay, t,

IS the time it takes the output to (dis)charge 50% of its
voltage.

0 We will look at three ways to
calculate the propagation delay:
» By solving the integral above. _J’ \>°1 \_
» By approximating the average current
E By using equivalent resistance 0 E

Systems Genter
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t,q — solving the integral _Jél >°—_|: N

ﬁ

a We'll start with V,;,=0. Accordingly, P1is
open and N1 is closed, causing the output
voltage to be held at V,,=Vp

a Att=0, V;, changes from 0 to Vpp, closing
P1 and opening N1.

G
Q This causes the output to discharge _q
like a first order RC network.

A" Vire

| o
\ b=

= %
— > VIST
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~/:\64* t,q — solving the integral ":vg@ i'fv

a At this point Vpg,=Vpp>Vgs-V1, SO N1 is in saturation and the
discharge current is given by:

o = (v, V) (L AV, )

DSn A
2

0 Assuming 4=0 and integrating until N1 enters the linear
region:
Vout EV O C [VDD —(VDD -V )]
t,= j\ dv =

Voo i, (sat) k_2n (Vo —V, )2

N

——! VIS§

Svsmms(:emer
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Sog _~
t,q — solving the integral e\ &)

Vit
a Now Ve <Vss-V7 and so N1 goes into linear operation with:

Vv 2
IDSn (res) = kn |:(V ) out OTUt:|

~—

a We'll write an expression for the change in voltage:

I 2
Vo, = _IDidt == |:(Vin —V; )Vout _VOZUt }

out C
load load

EI/ And arrive at the following integral: /’\ \

K

Voo £ = toHL dt _ Cload J<VDD/2
SR K, (VDD —V; ) Voo
Vpp/2
<
: — !
tpHL i “ls

Svsmms(:emer
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t ,— solving the integral

p
t == CIoad J‘ Voo/2 dVout
e K, (VDD -V; ) Ve 1 V,, 2 -V,

2(VDD _VT ) t

Q Using the equality:

j SX =In(1—ij
ax” —X ax

a We get:
t Cload In 3VDD _4VT — s
p2

0 And putting together the two parts, we get:

tpHL :tpl ‘|‘tp2 = 2CIoad |: VT +1|n(3\/DD _4VT ):|
kn (VDD _VT ) VDD _VT 2 VDD

0 For V;=0.2V,, We get: _— —
- 1. 6Cload 0
tpHL T 16(
= Koo VLS

Svsmmscemer
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t

g — @verage currents

Q Instead of solving the integral, we can sometimes assume
a linear change in current to make life much easier.

Q This assumption just lets us find the average current
between t=0 and t=t,; and calculate:

VDD
C AV Cload 7

load

T80 g ;[iDsn(O)HDsn(tpHL)}
T T
3

Q
Svste merI
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{,q — average current

QO Example

» Step input into a CMOS inverter with a
minimum sized nMOS driving a 1.5fF load.

a t,
» VDS=VDD, VGS-VT=VDD-VT _[é+ O)
Vosert = r?Ln (V_DD Voo =V Vosan ) @/7 swy \’“0
I DS (to) = kn |:VGTnVDSatn 0. 5VDZSatn :| (1+ ﬂ’VDSn ) I) K vool
— 9
_115;10 184 (1.37-0.63-0.5-0.63 ) (1+0.06-1.8) = 84. 84.7uA
d tpd 0. 18,Ll

k- A LA

VDSeff mln VDD / 2 VDD VTn ’VDSatn ) w ;7 S” \,010 e m
e 7] T

| DS ( 0 ) K |:VGTnVDSatn 0. 5VDSatn :| (1 + ﬂ'VDSn ) \,0

0.184 y

» VDS=VDD/2, VGS-VT=VDD-VT ~ y¢', /[4 /J

—115——H 1.37-0.63—0-5'0-632)(1+0 06-0. 9 =80.6 LA VI_S

Systems [:emer
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{,q — average current

» The average current is:
84.71+80.6
g =0.5(Tps () + s (tya ) ) = “2 2 —82.65uA

» S0 we can find the delay:

V(t,)-V(t
t, =C, (%) (pd)=1.5f82?é%ﬂ=16.33p

VLSt
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it

t,o — equivalent resistance _

—?1—

Q A good way to estimate the propagation delay is by finding
the resistance of the MOSFET during the transition and
using this resistance in quick calculations.

a The primary approach to deriving such an equivalent
resistance is to calculate the transistor’'s average resistance
throughout its operation (ON) period.

R, =average_, . (R, (t))= : itl tj R, (t)dt = : itl tj\llzz Eg dt
< 2[R (1) + R (1)
"D @_‘i TD‘(;,,}/ 0.9 /L(?/(t/
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t,q — equivalent resistance )

2 Now, we will calculate the propagation delay of a short
channel inverter, by using the equivalent resistance to

discharge a capacitor from Vg to Vp/2. Ve VoV 0p/2)
[D£L| l" e
a Assuming Vpp>>Vpsatn, WE Can assume T
that throughout the propagation delay,

the transistor Is velocity saturated.

Q We can write: 1 Ve N
Req — DS
VDD / 2vDD/z IDSAT (1"' X’VDS)

3V 7
dVDS zZ DD (1_§)”VDDJ

V 2
IDSAT = kn |:(VDD _VT )VDSAT - DSZAT } "
Svsmms(:emerI
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t,q — equivalent resistance

a For example, if VDD=1.8V:
DSATn =K [ GTn DSatn -0.5V SSatn]

_115,, 184 (1.37-0.63-0.5-0.63") = 76.43 A
0. 18/1 —

Reqn ~ E VDD (1_ZAVDD
4 DSAT, 9

_s_18 (1—10.06-1.8j:16.18k9
476434A 9

VLSt
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t,q — equivalent resistance

a So all we need is to use our “magic” equation:
UogrL = O.69ReanL =0.69-16.18k -1.5f =16.75ps

a0 Remember that for t,4, we also need R, for:

pd>

t .+ tpHL _ 0'69CIoad (Reqp i Reqn)
pd 2 B 7

.é/ .

—
nY
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p

t ,— equivalent resistance

O To calculate and analyze the parameters that affect the

propagation delay, we will take 4=0 and get:

N —

3 Vqp

VDD(:Ioad )

t =0.69C, > —0_ =052

a Accordingly, we can minimize
the delay in the following ways:

» Minimize C, ..
» Increase W/L —) (/m:/\
» Increase Vpp

Digital Microelectronic Circuits

The VLSI Systems Center - BGU

p—
4 IDSATn @DSATn (VDD _VTn _VDSAT 5 )

55

LM.’A zllk

5

4.5}

t (normalized)

0.8 | 2 14 q's 18 2 zv[s@
SvsmmscemerI
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Last Lecture

Q CMOS Inverter \,5}/7 [ |
» Intuitive Explanation >( \0
» VTC ’ -
» VM '\{\ 51\})]‘/
» Noise Margins -
2 Propagation Delay \ 0, L/—* >(
Aé- O tf\ \IOU\' AU
AV C —
ﬂ N v
-2 —
= \; :\7 td 20 (s (o
- s
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Affect of Device Sizing

0 So we saw that to reduce the propagation delay,
we need to increase the device sizes (W/L).

a But how much should we increase them? What are
the tradeoffs?

a For this, we will discuss two sizing parameters:
» Beta Ratio (B) &
» Upsizing Factor (S) &—

s
! =

| .
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What happens when we upsize a transistor?

a Effective resistance decr eases:

/ Wl = R

/d

WU KEYd

Q Gate and Drain Capacitance Increase:
Gate Cof Vrdn Ca
7 I ﬁ— /
CG(C W\, V ‘ / / CJQC lk)

uiS;
‘l > A Systems l:emerI
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Device Sizing - B

Q Device Sizing is the Width to Length ratio (W/L) — J.
of the transistor.

a When discussing a CMOS logic gate, we relate
to the pMOS/nMQOS ratio ((W,/L)/(W,/L,)). IQ (

%

» We will call this ratio g. / L)
a To get a balanced inverter (i.e. V,;=Vp/2)
we usually will need g=3-3.5, mainly due to - 'SJ'J ‘N 2P
the mobility ratio of holes and electrons. -

a This generally equates the propagation l"_:/_
delay of High-to-Low and Low-to-High transitiont. Lo
0 However, this does not imply that this ratio W

yields the minimum overall propagation delay.

h e
p | VIS}

Systems Genter
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Device Sizing -

Q How can this be? CP 7

Mol
» To get afaster t, ,, we need to enlarge the pMOS width.

» This increases the parasitic capacitance (C,,,4), degrading LomL-

5

— — 4.5

ﬁy":%‘
2

3.5¢

1 15 [2 2.5 35 4 45 5 v[s@
SvsmmscemerI
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Device Sizing - B

Systems Genter
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Device Sizing - B

Driver

a We will now find the optimum ratio for
sizing an inverter, considering two _Dokv == >
identical cascaded CMOS inverters. 1 T L

Q The load capacitance of the driving ﬂ r I

ate Is: _ Cin Cen
J Cload o C + Cin2 + C

wire
0O Assuming the input capacitance Is the gate capacitance of_
the transistors (C,) and the output capacitance g

IS the drain capacitance (C,), we can write: EE__DE
CIoad _(Cdpl +Cdn1)+(C +an2)+C S S

gp2 1 1

outl

wire

QO Assuming a linear dependence on device size, we get:

Cload — (1+ ﬂ)(Cdnl + anz) + Cwire ﬁ 2 % “ls%
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Device Sizing-B /Il

a Noting that we have reduced the equivalent resistance of

the pMOS by g, we can write the first order RC propagzation

delay: ,EM N/c”:z. - 0.01C, - %‘72"7,‘
Ryw:
b

0.69C

t, = : - load (Reqn + Reqp) = O.345[(1+’,Q)(Cdnl + an2)+ Cwire](RM: _™

g — —

)
~ ]

dt_pd =0 ﬂ — Reqp 1+ C ire N Reqp of"r
dﬂ o V Reqn %_'_ anz Reqn ﬂ‘V\

(Cdnl +an2 >>Cwire )

4
O Now we just need to find the minimum: : :

Q A typical optimum for g is usually around 2.

VLSt
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Device Sizing - B

\Ld 9:\/04' I
B #—A‘%J‘m—v

a Conclusions:
» A balanced inverter isn’t usually the 1 @
-~

fastest possible inverter, x10"

» A typical optimal
PMOS/NnMOS ratio
for performance
IS given by:

o‘éﬁw%:m ~ \/E R 2
[jJ AW/W"’/A‘ Al
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LoLn

— Vg,
g

iz
| 1 B N Ne

2.5 3 3.5 4 4 .|
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Device Sizing - S

a We saw how the ratio between the pMOS and
NMOS can be optimized to improve performance.

a Now, we will take a balanced inverter and see how
upsizing affects the intrinsic or unloaded delay.

-

0 We will start by writing the delay as a function ¢f
Intrinsic capacitance (diffusion and overlap) and t
extrinsic capacitances (fanout and wiring):

CIoad = Clnt + C \

t = 0.69R, Copg =0.69R,, (C +Cy)

int

T

e

load

VLSt
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Device Sizing - S

a Now, we will mark the minimal intrinsic delay as t,,. This is
the delay of a minimum sized balanced inverter only loaded

by its own Intrinsic capacitance (C,,=0):
ext (@é O’-QQBLefCref |
2 We will now mark the sizing factor, S.

This Is the relative upsizing of the inverter, ,\‘730

l.e. C;n=SC,¢ and accordingly Ry =R/S.

O Now we can write the delay of an upsized inverter:

t,; =0.69R,, (C, +C,,)=0.69 R (scref+cext)

int
—

C / C on [Y
- 0269 Rref C|ref l 1+ SCEXt J = 1:DO [1+ S;th.‘
ref ref “I-SI

Systems Center
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Device Sizing - S

yoa | dTSpe
0% )y .
vl -

N
/

1I0 1I2 14 S‘

8
S (3
VLSy
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Device Sizing - S

Ly :tpo(l‘F c )
' : SC
a Conclusions: ref

» The intrinsic delay of an inverter (1) Is independent
of the sizing of the gate and Is pu‘%y determined by
technology. When no load is present, an increase in

the drive of the gate is totally offset by the increased
capacitance.

» To minimize a loaded inverter’s delay, S should be

enlarged, but at the expense of a substantial gain in
area.

VISt

] SVS[emS ﬂ&mﬂf
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Summary of Dynamic Parameters ~

]

a We can calculate t4 In several ways, but the /:f%

easiest Is to measure the equivalent resistance
during a typical transition.

0 One of our main techniques to improve the delay is
through transistor sizing, which we dlscussed
two fashions: N

» Setting the optimal ratio between the PUN/PDN. _
» Upsmng the gate to deal with a large output I?}ad

Vov¥
VIST

e |
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N1 A

e U

L"'l An Intuitive Explanation

L‘l" Static Operation

L‘l'; Dynamic¢ Operation

Lﬂl-.‘l- Power Consumption

L‘I-.S Summary

And now that we fully understand the static and dynamic
operation of the CMOS Inverter, it's time to take a look at

Systems Center.
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equivalent circuit during a Low-to-High transiti
IS given by:

. ” dVou
EVDD - _[0 IVDD (t )VDDdt :VDD _[0 CIoad Ttdt = CIoadVDD 0 dV CIoadVDD2

0 Now, looking at the energy stored
In the load capacitance, we get:

0 d V 2
ECharge :J.o IVDD( Voudt = j C|Oad Yo Voutdt _Cloadj Vou@Vou 'Oadz

out

VLS
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Dynamic Power

2

2 CoaV
EVDD :CIoadVDD E =

Charge 2

Q Analyzing these results, we see that the energy required to
charge the output capacitance Is twice the energy stored on

the capacitor at the end of the transition. Voo

Q This is relatively surprising and very important.
It means that half of the energy was wasted on
the pMOS resistance independent of its size!

Systems Center.
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—
IV{ﬂ,rj _ Dynamic Power U“fé’)/ic""“

T
d Assumlng e Input Changes now from zero to one, /\ ’i

we now get a High-to-Low transition. ¢ ¢

a Here, the supply is disconnected, and the charge stored 2
on the capacitance flows through the nMOS to the ground.

O The energy dissipated is the total energy stored
on the output capacitance, as no charge is left:

. dv
Edischarge = -[O IDSn( Voutdt = J‘ CIoad OUI V dt = CIoad '[VDDV dV

out out

Q The sum of the charge and dlscharge
energy Is obviously equal to the energy
supplied:

Echarge T Edischarge = EV = CloadV
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Dynamic Power

a Conclusions:

» Each charge and discharge cycle dissipates a fixed amount of
energy, independent of the size of the device.

» The effective energy is the charge stored on the capacitance. The
rest of the energy is wasted as heat burned on the pMOS (charge)
and nMQOS (discharge) resistance.

0 To compute the Power Dissipation, we calculate
the total energy wasted per one second.

0 For a circuit that completes a Low-to-High transition f09l

times per second (and therefore a “

A

High-to-Low transition as well...),

the dynamic power consumption is:

den = CIoadVDD2 ' f@{l
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Dynamic Power

0 We said that the Power Dissipation is a

factor of the switching frequency of the gate. M

O But the gate only switches when its input NN )
changes. In other words, the switching activity
Is smaller than the circuit frequency.

0 We can rewrite the Dynamic Power expression 4/ J)
h

using the activity factor, a of the inverter,
expressing the probability of the output to switch:

_ L 2
Pan = CasaVoo * @ =CypVoy,' |

dyn — Ioad

a C.xIs the effective capacitance of a complex E’( s C\] U :
e . . J W 507
circuit, describing the average capacitance
that actually switches each cycle. |"_s

Systems [:emer
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Short Circuit Power

a During the above analysis, the input was an
Ideal step function, immediately closing one P: Pl
transistor when the other was opened. *

a In areal circuit, the input signal has a non-zero rise/fall time,
resulting in a time interval with both the pMOS and nMOS
transistors open.

a This provides a direct path from V5 to GND, with a current
known as Short Circuit current.

Q This is shown in the following
waveforms:

oy R
# TR oy

Digital Microelectronic Circuits The VLSI Systems Center - BGU Lecture 4: The CMOS Inverter 73

+ PS‘}G""

. Voo Vs




a The energy dissipated via short circuit powe
Is the area under the triangles: \\“&”/ hy
7

| ol | o
. peak “sc peak "sc
Esc _VDD +VDD _tscv |

2 ) 1o e f[‘ e
0 And the average power consumption Is: 1

P =tV I_f

sc " DD " peak
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Short Circuit Power

Q The short circuit interval, t

SC?

Is the margin between

the threshold voltages of the transistors.
a Assuming a linear input transition:

t =

VDD o 2VT ) trise(fall)

SC

VDD

0.8

Digital Microelectronic Circuits
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Short Circuit Power lk

0 What affects the short circuit power?

» A short input rise time with a large output
capacitance (large fall time) minimizes

short circuit power, as the peak current
IS very small.

VLST
SvsmmscenmrI
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Short Circuit Power

0 What affects the short circuit power?

» small output capacitance relative to the
Input rise time causes extensive short
circuit power, as the peak current is
maximal (saturation current of the

transistors).
Via _

a Conclusion:

» Try to keep the input and output rise/fall
times similar to maximize performance - —
and minimize short circuit power. Vle

Systems Center.
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) P - 'O
Static Power 1 -
Q ldeally, a MOSFET transistor is a perfect switch. — q
Q In such a case, a CMOS inverter never has a conductln f'x
path in steady state, resulting M5

IN no static power dissipation.

0 However, Iin reality, MOSFET
transistors never completely

t:;n off. @ Y
“, 7 I\—C{‘Z(‘
ALl / \ 4
. Lo B Y
0 ) /\

! Visi
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Static Power

QO Since static power is constantly consumed, the power
dissipation can be simply expressed as:

P =1V

static static
O Sources of static power are beyond the scope of this
course, however they are quickly becoming the dominant
source of power in advanced sub-micron technologies.

Q For further probing, see these subjects:

» Subthreshold current 10

» Hot Electrons

» DIBL

» Punchthrough ~t =3
’ | >Vgs  UIST
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Total Power Consumption

QO As we saw above, there are three components to the power
dissipation of a CMOS inverter:

» Dynamic Power
» Short Circuit Power
» Static Power

0 Putting them all together, we get the total power
consumption of a CMOS logic gate:

Pt = Py + P + P = fC

total dyn static

load

VDD +a Vil peak Lsc +Vpp

static

VLSt
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Total Power Consumption

a We previously learned that the power-delay-product (PDP)
measures the average energy of a switching event:

1
tpd = CloadVDD2 [ ECIoadVDDZ

max-pd

PDP =P,

yn

Q Since both Power and PDP give a clear advantage to
energy reduction versus performance, we measure the
energy-delay-product (EDP) as a combined measurement of
the two:

1
EDP = PDP -t =—C Voot

load

Systems Genter
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Okay, enough with the inverter. But
before we go on, let’'s go over a short

SUMMARY

VLS}
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Summary

a The CMOS inverter is characterized by:
» A pMOS Pull-Up device and an nMOS pull down device.
» The pMOS is usually wider due to inferior current driving.
» An almost ideal VTC with a full rail to rail swing.
» Noise margins of a balanced inverter are close to V/2
» The steady state response is not affected by fanout.

0 Propagation delay: 0690 (Reqp +Reqnj
. pd — “° load

» Can be approximated as:

» Small loads make faster drivers.

» Widening the transistors improves the delay.

a Power Dissipation: f ,
» Dominated by dynamic power, given by: =aiC VDD
» Short circuit power can be reduced by equating input/output slopes.

» Static Power is a problem out of the scope of this course. 23
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